4 100%

4 100%

STUDY MODULE DESCRIPTION FORM Name of the module/subject **Traction engines** 1010611251010622451 Profile of study Field of study Year /Semester (general academic, practical) **Transport** (brak) 3/5 Elective path/specialty Subject offered in: Course (compulsory, elective) **Road Transport Polish** obligatory Form of study (full-time,part-time) Cycle of study: First-cycle studies full-time No. of hours No. of credits 4 2 Lecture: Classes: Laboratory: Project/seminars: Status of the course in the study program (Basic, major, other) (university-wide, from another field) (brak) (brak) Education areas and fields of science and art ECTS distribution (number and %)

Responsible for subject / lecturer:

Technical sciences

dr hab. inż. Władysław Kozak

email: wladyslaw.kozak@put.poznan.pl

tel. 61 665 27 91

technical sciences

Faculty of Machines and Transport ul. Piotrowo 3, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Students have basic knowledge of machine design and are familiar with mechanics and dynamics of solids
2	Skills	Students can apply their knowledge to understand traction engines
3	Social competencies	Students are aware of their career development

Assumptions and objectives of the course:

Traction engines design and the function of their main working units

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Students have theoretical background in engines work and design (cycles and basic thermodynamic laws). [K1A_W13]
- 2. Students know how to assess the engine work (parameters, characteristics). [K1A_W14]
- 3. Students know the structure and function of all engine systems and units. [K1A_W14, K1A_W18]
- 4. Students are familiar with the dynamometer and basic measuring methods applied in engine characteristics. [K1A_W16]

Skills:

- 1. Students are able to explain how particular engine systems work $\,$ [K1A_U01]
- 2. Students can assess and compare engines [K1A_U04]
- 3. Students can expound traction engines? design and operation [K1A_U02]
- 4. Students are capable of carrying out engine tests including measurement and determining engine characteristics [K1A_U07]
- 5. Students can assess the engine quality and compare it with other sources of energy [K1A_U10]

Social competencies:

- 1. Students are aware of engine?s influences on the environment [K1A_K02]
- 2. Students can analyze and evaluate the suitability of an engine for particular power train [K1A_K06]
- 3. Students are able to justify recommended specifications and conditions of use [K1A_K03]

Faculty of Working Machines and Transportation

Assessment methods of study outcomes

Written examination, assessment for laboratory tasks

Course description

Key words: pressure, work, power (theoretical, indicated, effective and friction); engine efficacy and fuel consumption

Cycles: theoretical, in real conditions, values of pressure as well as temperature at specific cycle points

Characteristics: full power, load, and general

The structure and operation of: cam- and crankshaft, cooling system, charging system, EGR, all parts of fuel system, pump-injectors, CR control system

Emission: directives for reducing emission, emission measurements, working conditions during measurement

Basic bibliography:

- 1. Wajand J.A., Wajand J.T.: Tłokowe silniki spalinowe średnio- i szybkoobrotowe, WNT Warszawa 2000.
- 2. Serdecki W. (red.): Badania silników spalinowych, WPP, Poznań 2012.
- 3. Serdecki W.: Badania silników spalinowych. Laboratorium: WPP, Poznań 2001.
- 4. Praca zbiorowa: Układ wtryskowy Common Rail. WKŁ, Warszawa.
- 5. Praca zbiorowa: Układy wtryskowe UIS/UPS. Informatory techniczne Bosch.
- 6. Mysłowski J.: Doładowanie silników. WKŁ, Warszawa 2003.

Additional bibliography:

- 1. Niewiarowski K.: Tłokowe silniki spalinowe, WKiŁ, 1983.
- 2. Merkisz J.: Ekologiczne problemy silników spalinowych, Wyd. Politechniki Po-znańskiej, Tom I ?1998, tom II ? 1999.
- 3. Kozak W.: Fizykochemiczne podstawy regulacji I sterowania silników spalinowych. Wydawnictwo Politechniki Poznańskiej, Poznań 2011.

Result of average student's workload

Activity	Time (working hours)
1. Lectures	30
2. Laboratories	15
3. Revision, reporting	15
4. Preparation for lectures and laboratory classes	20
5. Consultations	4
6. Studying for exam, examination	15

Student's workload

Source of workload	hours	ECTS
Total workload	99	4
Contact hours	49	3
Practical activities	15	1